TORSIONAL RIGIDITY OF MINIMAL SUBMANIFOLDS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Torsional Rigidity of Submanifolds with Controlled Geometry

We prove explicit upper and lower bounds for the torsional rigidity of extrinsic domains of submanifolds P with controlled radial mean curvature in ambient Riemannian manifolds N with a pole p and with sectional curvatures bounded from above and from below, respectively. These bounds are given in terms of the torsional rigidities of corresponding Schwarz symmetrizations of the domains in warped...

متن کامل

Rigidity of Minimal Submanifolds in Space Forms

(1.1) Let c be a real number. Represent by A4"(c) a n-dimensional space form of curvature c. Let M N be a N-dimensional connected Riemannian manifold. The question that served as the starting point for this paper was to find simple conditions on the metric of M so that, if f:M"~ffl"+P(c), p>= 1, is an isometric minimal immersion then f is rigid in the following sense: given another minimal imme...

متن کامل

Rigidity of Compact Minimal Submanifolds in a Sphere

In this paper we study n-dimensional compact minimal submanifolds in S with scalar curvature S satisfying the pinching condition S > n(n − 2). We show that for p ≤ 2 these submanifolds are totally geodesic (cf. Theorem 3.2 and Corollary 3.1). However, for codimension p ≥ 2, we prove the result under an additional restrictions on the curvature tensor corresponding to the normal connection (cf. T...

متن کامل

Minimal Submanifolds

Contents 1. Introduction 2 Part 1. Classical and almost classical results 2 1.1. The Gauss map 3 1.2. Minimal graphs 3 1.3. The maximum principle 5 2. Monotonicity and the mean value inequality 6 3. Rado's theorem 8 4. The theorems of Bernstein and Bers 9 5. Simons inequality 10 6. Heinz's curvature estimate for graphs 10 7. Embedded minimal disks with area bounds 11 8. Stable minimal surfaces ...

متن کامل

On Isometric and Conformal Rigidity of Submanifolds

Let f, g : Mn → Rn+d be two immersions of an n-dimensional differentiable manifold into Euclidean space. That g is conformal (isometric) to f means that the metrics induced on Mn by f and g are conformal (isometric). We say that f is conformally (isometrically) rigid if given any other conformal (isometric) immersion g there exists a conformal (isometric) diffeomorphism Υ from an open subset of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the London Mathematical Society

سال: 2006

ISSN: 0024-6115,1460-244X

DOI: 10.1017/s0024611505015716